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Studies of the role of sex in evolution typically involve a longitu-
dinal comparison of a single ancestor to several intermediate
descendants and to one terminally evolved descendant after many
generations of adaptation under a given selective regime. Here we
take a complementary, statistical approach to sex in evolution, by
describing the distribution of phenotypic similarity in a population
of yeast F1 meiotic recombinants. By applying graph theory to
fitness measurements of thousands of Saccharomyces cerevisiae
recombinants treated with 10 mechanistically distinct, growth-
inhibitory small-molecule perturbagens (SMPs), we show that the
network of phenotypic similarity among F1 recombinants exhibits
a scale-free degree distribution. F1 recombinants are often pheno-
typically unique and sometimes exceptional, and their fitness
strengths are unevenly distributed across the 10 compound treat-
ments. By contrast, highly phenotypically similar F1 recombinants
constitute failing hubs that display below-average fitness across all
compound treatments and are candidate substrates for purifying
selection. Comparison of the F1 generation with the parental
strains reveals that (i) there is a specialist more fit in any given
single condition than any of the parents but (ii) only rarely are
there generalists that exhibit greater fitness than both parental
strains across a majority of conditions. This analysis allows us to
evaluate and to gain better theoretical understanding of the costs
and benefits of sex in the F1 generation.

graph theory � meiotic recombination

Both theory and experiment suggest that (i) the benefits of sex
(meiosis) outweigh its costs (1, 2) and (ii) organisms that

reproduce sexually evolve faster than their asexual counterparts (3,
4). The essence of the Weismann hypothesis is that recombination,
a combinatorial process by which sexual species access novel,
beneficial arrangement of polymorphisms while at the same time
sloughing off harmful mutations or allelic combinations, leads to an
increase in the variance of fitness in sexually reproducing popula-
tions (5). However, sex is believed to doom favorable parental allelic
combinations and incur additional costs (6). There have been many
attempts to reconcile the costs and benefits of sex. Two recent
studies (7, 8) illustrate the benefits of sex. We provide additional
evidence for its benefits by describing a combined experimental/
theoretic approach that reveals the degree distribution of pheno-
typic similarity of thousands of Saccharomyces cerevisiae F1 meiotic
recombinants derived from an outbred genetic cross. Our approach
complements previous studies in two ways. First, we take fitness
measurements of random meiotic recombinants in 10 diverse
environmental conditions after an initial selection on a neutral
medium. In contrast, other studies (9, 10) have compared an unfit
ancestral strain with a fitter evolved strain after a continuous,
multigenerational adaptation on a single selective medium that
typically consists of an ‘‘off-the-shelf’’ stressor, e.g., nutrient star-
vation (11) or osmotic stress (4). Second, we randomly sample from
the distribution of a single meiotic generation, the F1 generation,
which is composed of both potentially fit and unfit recombinants,
rather than sample the fittest recombinants at different genera-

tional milestones. In this screening approach, we capture clones that
would normally perish undetected under continuous selection.

The fitness measurements that we make are analyzed in a
number of complementary ways. First, we construct a graph
(network) that represents the phenotypic relationships among
the recombinants: each meiotic recombinant is a node, and an
edge is drawn between two nodes if they have similar composite
fitness profiles across 10 environmental conditions. We find that
the resulting network of phenotypic similarity among F1 recom-
binants exhibits a ‘‘scale-free’’ topology in which the probability
of finding a recombinant with a certain number of phenotypic
neighbors (called the degree of that node and denoted k) follows
a power-law distribution; i.e., p(k) � k��. The value of the
power-law exponent that we measure (� � 1.6) indicates that
both the average and variance of connectivities in this graph are
not well defined; that is, it is impossible to identify a degree in
the graph that characterizes most recombinants. To understand
the origins of this scale-free network, we construct a simple
model of recombination and show that it reproduces the scale-
free topology of the observed phenotypic similarity network.
Finally, we analyze the benefits and costs of sexual reproduction
in this experimental population by comparing the fitness of all
recombinants to the parental strains. This combined theoretical/
experimental approach allows us to characterize the detailed
phenotypic landscape produced by meiotic recombination in
yeast.

Results and Discussion
Recombination and Fitness Measurements. We compare the sex-
generated phenotypes of F1 recombinants to the phenotypes of
their two parental strains, as well as to the heterozygous diploid
strain that bore them. In our study, we selected the heterozygous
diploid strain XHS123 (12), the product of a cross between a
laboratory strain and a clinical isolate (12). Heterozygosity is
widespread in this cross, as evidenced by a comparison of the
known genome sequences of both the laboratory strain and
the clinical isolate: the latter displays an average difference to
the former of 10�3 changes per synonymous site (13). XHS123
is heterozygous at the HO (YDL227C) gene, which encodes an
endonuclease that initiates mating-type switching. After sporu-
lation, four haploid segregants are formed, but two go on to
self-diploidize after germination, i.e., become homozygous dip-
loid. Nonuniform ploidy among F1 recombinants may confound
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direct comparisons between our results and those of traditional
studies of sex that involve direct competitions between strains
with identical ploidy. We performed three independent sporu-
lations of XHS123, and each time we harvested thousands
of random F1 meiotic recombinants (n1 � 1,932, n2 � 2,657, and
n3 � 3,107). Because XHS123 is URA3/ura3::kanMX4, one-half
of F1 meiotic recombinants inherit the wild-type URA3 (oroti-
dine-5�-phosphate decarboxylase) gene, i.e., are able to grow in
the absence of uracil, whereas the other half of F1 meiotic
recombinants inherit the apposing kanMX4 cassette, which
encodes a phosphotransferase that confers resistance to the toxic
aminoglycoside geneticin (G418). 2:2 segregation of this artifi-
cially engineered Mendelian (i.e., monogenic) trait allowed us to
identify, rapidly and reproducibly, recombinants that success-
fully underwent random assortment. We then assessed, in du-
plicate, the fitness of each F1 recombinant in 10 different assays
by using 384-well clear-bottom plates, wherein proliferation is
measured by light absorbance (OD600) after 48–96 h of bench-
top incubation (Fig. 1). Our assays involve treatment with
different small-molecule perturbagens (SMPs). Generally, the
response of yeast to SMPs is complex (14) (i.e., polygenic), a fact
that allows us to monitor the segregation of multiple quantitative
trait loci (QTLs).

The following are the 10 SMPs used in our study (not counting
the DMSO control treatment that captures intrinsic growth
differences between recombinants): (i) dimethyl sulfoxide
(DMSO), the vehicle (solvent) in which most SMPs are resus-
pended; (ii) geneticin (G418); (iii) complete synthetic media
lacking uracil (CSM-URA); (iv) hydrogen peroxide (H2O2); (v)
SP600125; (vi) tunicamycin; (vii) calcimycin; (viii) menadione;
(ix) diphenyleneiodonium; (x) doxorubicin; and (xi) alpha factor
(�F). Briefly, H2O2 (15) and menadione (16) are both inducers
of oxidative stress, although their specific mechanisms of action
vary. SP600125 (17) is a putative Jun N-terminal kinase (JNK)
inhibitor, and diphenyleneiodonium (18) is a flavoprotein in-
hibitor. Tunicamycin (19) is an inhibitor of ALG7, UDP-N-
acetyl-glucosamine-1-P transferase, an evolutionarily conserved
gene involved in protein glycosylation. Calcimycin (20) is a
calcium-ion ionophore. Doxorubicin (21) is a topoisomerase II
inhibitor. Finally, �F is a 13-amino acid peptide that binds a G

protein coupled receptor (GPCR) that triggers the mitogen-
activated protein kinase (MAPK)-regulated mating response
pathway in haploid cells of the MATa mating type (22).

Phenotypic Similarity Graph. We began by implementing a pairwise
measure of phenotypic similarity between each of the F1 recom-
binants. This measure treats each recombinant as a vector that
is composed of the normalized growth of the recombinant in the
presence of each SMP (see Methods). The phenotypic distance
between a pair of recombinants is the Euclidian distance be-
tween their growth vectors (Fig. 1). This procedure produces a
matrix of distances, and we analyze the distribution of pheno-
typic similarity in this system by defining a cutoff in phenotypic
distance. This cutoff is used to define an unweighted graph, in
which nodes are recombinants, and edges are placed between
two nodes if the distance between them is less than the cutoff
distance. Each recombinant is characterized by the number of
neighbors it possesses at a given cutoff (called the degree of that
node and denoted k). Degree k represents the size of the F1
subpopulation that is phenotypically ‘‘closer’’ to a given recom-
binant than the cutoff. Analysis of the resultant networks from
three independent sporulation experiments reveals that each
iteration exhibits the well known scale-free topology across a
variety of cutoff values, indicated by the fact that the probability
of finding a recombinant with k phenotypic neighbors is well fit
by a power-law function; i.e., p(k) � k��. The representative
degree distribution displayed in Fig. 2A exhibits a power-law
exponent of 1.64. The nature of this degree distribution is robust
both to bootstrapping of the data and to removing one or two
entire conditions from the set of SMPs used to create the
phenotype vectors. Discussion of how cutoffs are chosen, and
how they affect the degree distribution of the network, can be
found in Methods. Similar topologies have been observed in
networks of both biological (23–27) and nonbiological origin,
and the ubiquity of these networks, along with some of the
general features of networks that display this topology, have
been discussed at length in the literature in recent years.

The scale-free topology that we observe in the network of
phenotypic similarity has a number of implications for the fitness
landscape produced by recombination in this cross. First, and

Control

SMP3

SMP2

SMP1

Fig. 1. Schematic depicting the generation of a network of phenotypic similarity. All XHS123 F1 recombinants are replica-pinned from stock plates (not shown)
into a control plate that contains DMSO (white) and into daughter plates, each of which contains a given SMP (red, green, and blue). The growth (i.e., fitness)
of each recombinant is measured as described in the text. These growth values are normalized by the average growth of the entire plate, producing a vector
of normalized growth values. The distance between the growth vectors of two recombinants is used to define the edges in the graph; similar recombinants are
connected by edges, whereas dissimilar recombinants are not. Completely unconnected recombinants are ‘‘orphans,’’ whereas highly connected recombinants
are ‘‘hubs’’ (not shown).
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most striking, the observed power-law exponent of the degree
distribution is �2 for the entire range of cutoffs that yield robust
scale-free networks (see Methods). This finding indicates that the
distribution does not exhibit a well defined average or variance
(28). If we consider the case of an infinite population of
recombinants (assuming that the power law we observe would
still hold), the average connectivity in that graph would diverge,
i.e., tend toward infinity. This is not to say that it is impossible
to calculate a mean and variance for the degree distributions
described above; this finding simply indicates that, as the re-
combinant population size increases, the average and standard
deviation in phenotypic connectivity within that population will
increase as well. This behavior is quite unlike other common
probability distributions (i.e., Gaussian or Poisson); in the
observed scale-free regime the majority of nodes, or recombi-
nants, do not share a characteristic (average) value or fitness
profile. A related implication of this finding is that phenotypic
‘‘hubs’’ (nodes with many phenotypically similar neighbors) are
found at a much higher frequency than one would expect to
observe in a Gaussian distribution with a similar sample average
and standard deviation.

Cumulatively, these observations pose a number of interesting
questions. First, we address the origin of a scale-free distribution
of phenotypic similarity. One possibility is that it arises as a
consequence of the physical nature of recombination. We tested
this hypothesis by creating and implementing a simple model of
recombination (described in detail in Methods). This model
involves polygenic traits that represent ‘‘resistance’’ or ‘‘sensi-
tivity’’ to a given set of conditions (here we set the growth of
resistant strains to 1 and sensitive strains to 0). The loci for these
traits are randomly arrayed on a single chromosome, and each
polygenic trait (corresponding to resistance in a given condition)
corresponds to the same number of loci (e.g., each trait exhibits
three loci). Each locus has two alleles, one that contributes to
resistance and one that contributes to sensitivity. We model total
resistance using an ‘‘all-or-none’’ principle; for a recombinant to
be considered resistant to a particular condition, all of the loci
that correspond to that trait must have the resistant value.
Recombination occurs between two parents that have com-
pletely opposite resistance profiles. Thus, if parent A is resistant
to a particular condition (with all of the loci for that condition
set to the resistant allele), parent B is sensitive to that condition
(with all loci set to the sensitive allele). Recombination occurs
at nearly random points on the chromosome, and depending on
the frequency of recombination in the resulting population, we
observe a scale-free distribution of phenotypic similarity in the
simulated F1 generation (Fig. 2B). Although this model is very
simple and lacks much of the complexity of the system that we
experimentally test (such as continuously varying quantitative
traits with complex allelic dependencies), it does indicate that

this observation may represent a simple consequence of the
process of recombination for a large set of polygenic traits and,
thus, could describe the phenotypic landscape one might expect
to result from recombination.

Second, we address the consequences of a scale-free distri-
bution of phenotypic similarity for the evolution of sexually
reproducing organisms, which involves a comparison of the
overall phenotypic performance of F1 recombinants to the
performances of the parental strains that bore them. If we
consider each of the parental strains, which we will denote ‘‘lab’’
for BY4741 (haploid) and BY4743 (diploid), ‘‘clinical’’ for
YJM789 (haploid) and YAG040 (diploid), and ‘‘het’’ for
XHS123, we find that two of them exhibit low connectivity
(kBY4741; kYJM789 � 1), whereas the rest have no neighbors in the
network (k � 0). Although it is not surprising that the recom-
binants differ from each of their parental strains, the fact that the
heterozygote does not represent a hub indicates that the cumu-
lative dissipating effects of recombination (i.e., independent
segregation and assortment of genomic loci) results in few F1
recombinants that are phenotypically similar to the heterozygous
state. Next, we generated fitness distributions of F1 recombinants
treated with each SMP. Analysis of these growth distributions
indicates that the process of recombination generally produces a
bimodal distribution of growth in the F1 population (Fig. 3B) and
that transgressive segregation, wherein meiotic recombinants
display trait values (e.g., resistance) greater than either parent,
is commonplace. The large, less fit peak in these distributions
corresponds to those recombinants that closely resemble the
sensitive parental strain, whereas the small, fitter peak corre-
sponds to those organisms that are more similar to the resistant
parent.

In every case there is a sizeable subpopulation of recombi-
nants that grow at least as well as the resistant parental strain or
heterozygote [Fig. 3B and supporting information (SI) Fig. 5].
Although it is unclear to what extent the differences in normal-
ized growth among the resistant individuals in our assay would
translate to significant differences in fitness and growth rates
that might influence the outcome of competition experiments,
our results indicate that a large fraction of the F1 population
would compete favorably with the parental and heterozygote
strains (and perhaps even out-compete them). This assertion is
further corroborated by the fact that the difference in normal-
ized growth between the most fit parental strain and the most fit
recombinant is generally greater than the standard deviation in
normalized growth between individual replicates (data not
shown) and among all recombinants and parental strains in
DMSO (�0.2 normalized growth units; see Fig. 3A). Given the
unclear relationship between the growth measurements we use
and the performance of the recombinants in competition ex-
periments, we did not perform an ANOVA analysis to establish

A B

Fig. 2. Scale-free degree distribution of a representative network of phenotypic similarity composed of 3,107 F1 recombinants. (A) Empirical degree distribution
fit by power law with exponent 1.64. (B) Direct comparison of results observed in experimental network and results generated by recombination model.
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the likelihood that these differences are significant; a more
detailed comparison of fitness distributions and differences
among the parental strains and recombinants is left to future
work. Nevertheless, we find that the hubs in the phenotypic
network invariably correspond to the less fit regions of these
distributions, indicating that these phenotypically similar recom-
binants sample similar unfit areas of the landscape (Fig. 3C).
This finding represents a direct observation of the efficiency of
purifying selection in recombination; these hubs comprise a
‘‘sink’’ for unfit allele combinations that would clearly be out-
competed by their more fit brethren in any of the conditions
tested.

Costs and Benefits of Sexual Reproduction. To quantify phenotypic
performance and to compare recombinants across all 10 assays,
we introduced the true benefit ratio (TBR). We calculate the
TBR for a given recombinant by dividing its normalized growth
in each condition by the growth of each parental strain (het,
clinical, and lab), a process that yields a ratio for each parent; the
TBR is the minimum of these ratios. The TBR represents the
absolute benefit that recombination has provided to an F1
recombinant. As is clear from Fig. 4A, in every condition we
observe a number of recombinants with TBR � 1. However, we
find that the majority of recombinants are phenotypic failures
that do not exhibit TBR � 1 in any condition, indicating that
unfavorable combinations of alleles (which collect in these
recombinants) have a high probability of being eliminated from
the population via purifying selection in a wide variety of
conditions (10). Most F1 recombinants are specialists: they have
a TBR �1 in one or a few conditions, whereas only a few

generalists have high TBRs in many conditions (Fig. 4B). Not
surprisingly, generalists tend to be phenotypic orphans; they
represent rare combinations of resistant alleles across a variety
of conditions. The hubs of the phenotypic network are univer-
sally ‘‘losers’’; indeed, none of the top five k recombinants in the
network exhibits a single TBR � 1. We observe the same general
relationship between the number of conditions to which a
recombinant is resistant and connectivity within the context of
our simple model (Fig. 4C), indicating that the above observa-
tion may reflect general features of the process of recombina-
tion. It is important to note that the model does not exhibit quite
the same level of separation between resistance and sensitivity
in high-connectivity organisms (compare A and C in Fig. 4),
which may result from the fact that this model of recombination
does not consider important features such as epistasis and
complex dependence of resistance on allele combinations. De-
spite this fact, the nodes with the 50 highest connectivities in the
model are resistant to �5 of the 25 model conditions.

In conclusion, recombination simultaneously generates both
phenotypic specialists and generalists (substrates for positive
selection) while also removing particularly unfit combinations of
alleles via purifying selection in multiple uncorrelated condi-
tions. Although generalists are statistically rare (that is, they will
only be reliably observed in large F1 populations spawned by
outbred crosses), they represent the chance that recombination
will produce exceptional individuals that are robust to many
different environments. In each environmental condition, we
observe at least one recombinant that is more fit than either of
the parental strains. Moreover, the frequency of recombinants
that are as resistant to a given SMP as the most resistant parental

A B C

Fig. 3. Representative bimodal fitness distribution revealing phenotypically failing hubs. (A) Fitness distribution of 3,107 F1 recombinants grown in dimethyl
sulfoxide (DMSO). The bracketed orange line depicts the range of high k nodes. Vertical colored lines denote the fitness of parental strains, as shown in the inset
key. (B) Fitness distribution of 3,107 F1 recombinants grown in the small-molecule perturbagen (SMP) calcimycin. (C) Plot of average growth across all 11
conditions (10 SMPs � DMSO) versus standard deviation in growth between all 11 conditions. Each black point corresponds to an F1 recombinant, blue points
correspond to high k nodes, and the red line depicts a linear regression. The correlation coefficient is 0.8.

Fig. 4. Calculation of the true-benefit ratio enables a cost-benefit analysis of sex in the F1 generation. (A) Average TBR of a spore (calculated across all 10
conditions) vs. connectivity of that spore in the network with degree distribution shown in Fig. 2. (B) Plot similar to that in A but displaying the number of
conditions in which a given spore exhibits a TBR �1 vs. the connectivity of the spore. (C) Number of model conditions to which a recombinant is resistant vs. the
connectivity of that recombinant in our simple model of recombination.
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strain is several orders of magnitude more probable than what
would be accessible by mutation. This study, therefore, not only
reinforces the established notion that recombination increases
variance but also demonstrates that this variance diverges with
increasing population size (29). In other words, the potential for
phenotypic diversity is greater under the observed scale-free
regime than it would be under, for example, a Gaussian regime.
Finally, the process of recombination also results in a large
number of recombinants that exhibit comparatively low growth
rates across many conditions. These unfit strains tend to cluster
in certain regions of the fitness landscape, resulting in failing
phenotypic hubs embedded in a scale-free phenotypic similarity
network. The topology of this network implies that these unfit
hubs represent a significant portion of the population and thus
expose deleterious allelic combinations to purifying selection.

Methods
Yeast Strains. YAG040 (MATa/MAT� HO/hoD::hphMX4),
YJM789 (MAT� hoD:hisG lys2 LYS5 cyh2), and XHS123
(MATa/MAT� URA3/ura3D::kanMX4) were generous gifts
from J. H. McCusker (Duke University, Durham, NC). BY4741
(MATa his3	1 leu2	0 met15	0 ura3	0) and BY4743 (MATa/
MAT� his3	1/his3	1 leu2	0/leu2	0 MET15	0/met15	0
LYS2	0/lys2	0 ura3	0/ura3	0) were obtained from American
Type Culture Collection.

Random F1 Meiotic Recombinant Generation and Fitness Measure-
ment. Culturing and sporulation of yeast, as well as media
formulation, was done as described (30). F1 meiotic recombi-
nants were originally derived as random spores (not by tetrad
dissection), and they were then either manually arrayed or
robotically arrayed by a QBot colony picker (no. X8000; Genetix,
Boston, MA) from dabs of single colonies grown on agar trays
(no. X6021; Genetix) into individual wells of 384-well plates
containing rich media to make strain stock plates. NUNC
384-well, clear-bottom, untreated, sterile plates (no. 62409-604;
VWR Scientific, West Chester, PA) containing rich media and
either vehicle solvent (DMSO) or a given SMP were inoculated
with yeast from strain stock plates by using sterile polypropylene
384-pin replicators (no. X5050; Genetix). Inoculated plates were
grown without agitation on the bench top at ambient tempera-
ture conditions for 48–96 h and then vortexed on a standard
table-top vortexer (VWR Scientific) for 10–30 sec before mea-
surement in a SpectraMax plate reader (Molecular Devices,
Sunnyvale, CA) set to 600-nm emission. The growth of each
XHS123 meiotic recombinant in rich media containing a given
SMP was compared with its growth in media containing DMSO.
Meiotic recombinants that were unable to grow in DMSO were
eliminated from further study.

SMPs. SMPs were individually purchased as powder stocks from
various vendors in either 10-mg or smaller quantities, resus-
pended in DMSO in glass vials as stock solutions, and used at the
following final concentrations: 25 �g/ml calcimycin (no. CA-100;
Biomol, Plymouth Meeting, PA), 25 �g/ml doxorubicin (no.
GR-319; Biomol), 25 �g/ml SP600125 (no. 420119; EMD Bio-
sciences, San Diego, CA), 2 �g/ml tunicamycin (no. CC-104;
Biomol), 5 �g/ml menadione (no. M5625; Sigma–Aldrich, St.
Louis, MO), 25 �g/ml diphenyleneiodonium (no. D2926; Sigma–
Aldrich), 0.015% hydrogen peroxide (no. 31642; Sigma–
Aldrich), 10 �M alpha factor (Y1001; Zymo Research, Orange,
CA), 200 mg/ml G418 (no. 11811-031; Gibco, Carlsbad, CA), and
0.77 g/liter complete supplemental mixture without uracil (CSM-
URA) (no. 4511-212; Qbiogene, Carlsbad, CA). See the Na-
tional Cancer Institute-sponsored public database ChemBank
(http://chembank.broad.harvard.edu) for complete structural
annotations and mechanisms of action.

Graph Theoretic Analysis and TBR. The graph theoretic analysis was
conducted by first normalizing the growth of each well on each
plate by dividing the raw growth measurement for each well by
the average growth of the plate. Normalization of this type is
required to take into account the fact that each plate was not
allowed the same time in which to grow and that plates analyzed
later will have, in general, higher optical density (i.e., total
growth) values compared with plates analyzed earlier. This
normalization produces a smaller overall variance between
replicates (i.e., between identical individuals) compared with
other normalizations (i.e., median growth, average parental
growth on that plate, etc.). The normalized growth for each
recombinant was then averaged across the two replicates for
each condition. This normalized average growth across all 11
conditions represents an 11-dimensional vector that is used to
create a matrix of distances between the F1 recombinants. In this
case we employ a simple Euclidean measure of distance.

In the graph that we created, each recombinant represents a
node, and the edges between these nodes are constructed from
the distance matrix by defining a cutoff, dc, such that two
recombinants i and j are only linked by an edge if dij � dc. At a
given cutoff, the graph can be easily clustered by using a standard
depth-first search algorithm. The graph can be characterized by
the size of its largest cluster (the giant component, GC). As the
distance cutoff is decreased (i.e., as the cutoff becomes more
stringent), the size of the GC undergoes a transition from fully
connected, in which every node belongs to the GC, to completely
unconnected, in which every node is an orphan. This transition
has been well characterized (31) and allows us to standardize our
analysis between different experiments and between the exper-
imental and computational results. Given that the actual dis-
tance values in each separate matrix (and the distance measure
itself) do not have the same inherent scale when comparing
between experiments or between experiment and theory, this
transition allows us to perform a responsible comparison be-
tween the graphs; that is, we cannot fit the distance cutoff
independently to observe a particular behavior in each case. In
the work and graphs described in the text, dc is set so that the GC
contains one-fourth of the nodes in each graph. Cutoffs that yield
a GC containing between approximately one-eighth and one-
half of the number of nodes in the graph yield degree distribu-
tions that are well fit by power-law functions with exponents
between �1 and �2. At more stringent cutoffs, the graph is very
sparse (i.e., there are very few edges) and maximal degrees are
small, making it difficult to robustly fit degree distributions in
this cutoff region to power-law functions. At more permissive
cutoffs, the graph becomes very dense and the degree distribu-
tions are no longer well fit by power-law functions. In this range
of cutoffs, many phenotypically unrelated nodes become con-
nected, obviating the scale-free behavior.

The TBR is calculated in a straightforward manner. First, the
parental growth values are normalized and averaged for each
plate and replicate in each condition. The overall growth of each
parental strain was determined by averaging the growth of that
strain across all of the plates in each condition. The TBR for each
recombinant in each condition was obtained by dividing the
normalized growth of that recombinant in that condition by the
overall growth value of each parental strain in that condition.
The minimum such ratio was taken to be the TBR.

Computational Model of Recombination. To asses whether the
scale-free network of phenotypic relatedness could be achieved
based simply on the physical nature of recombination, rather
than on other biological or evolutionary factors, we created a
simple computational model of recombination. This model
considers a set of polygenic traits where resistance to a given
model condition is determined by more than one locus in the
model organism. In this model, every such trait corresponds to
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the same number of loci (i.e., all of the resistances are quanti-
tative traits with the same number of genetic determinants).
Each locus exhibits two alleles, one that contributes to resistance
(denoted ‘‘r’’) and one that does not (denoted ‘‘s’’). Resistance
to a particular condition is achieved only if all of the loci that
correspond to that trait exhibit ‘‘r’’ alleles in a particular
organism; that is, resistance requires that all of the alleles that
determine that trait have the resistant value. Resistant organisms
display a growth of 1 in the respective model condition and
sensitive organisms display a growth of 0 in the respective model
condition.

In this model we consider organisms with a single chromo-
some. Loci are arranged on this chromosome completely ran-
domly and without respect to which trait each locus contributes
(i.e., the correspondence between loci and traits is completely
random and uncorrelated). Two parental strains are constructed
to have completely dimorphic resistance profiles; that is, if
parent A is resistant to condition �, then parent B will be
sensitive to condition �. For simplicity, this is achieved by setting
all of the alleles that contribute to resistance in condition � to
‘‘r’’ in parent A and to ‘‘s’’ in parent B. Resistance in each
condition is assigned randomly to one of the parents. Recom-
bination between the A and B genomes occurs at random points
along the chromosome. The algorithm moves down a particular

chromosome, and at every position there is an independent,
constant probability (pcross) that a recombination event will
occur. One individual recombinant is chosen at random and
placed in the model F1 recombinant population.

The results reported in Figs. 2B and 4C were obtained from
a single realization of the model in which 3,000 independent
recombinants were generated according to the above procedure.
These results are based on 50 conditions (and thus a total of 50
traits) each of which is based on 3 alleles for a total of 150 alleles,
which are randomly placed on a single chromosome 1,500
‘‘units’’ in length. For the run described in the figures, pcross is set
to 0.0033. The realization displayed in the text is representative
of the ensemble of graphs created by using this set of parameters
(data not shown). We observe similar scale-free networks and k
vs. resistance behavior using different parameter sets (data not
shown), but we leave a systematic analysis of this model and its
dependencies to future work.
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